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TOMOGRAPHIC RECONSTRUCTION FOR
X-RAY CONE-BEAM SCAN DATA

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority under 35
USC 119(e) to U.S. Provisional Application No. 60/810,087,
filed May 31, 2006, which is incorporated herein by reference
in it’s entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The U.S. Government has rights in the disclosed invention
pursuant to NIH Grant No. EB093524 to Stanford University.

BACKGROUND OF THE INVENTION

The invention relates generally to medical imaging using
X-ray computed tomography (CT), and more particularly the
invention relates to reconstructing cone-beam x-ray scan data
in tomographic imaging.

Computed tomography is an established medical technique
for visualizing internal organs with high resolution. Both fan
beams and cone beams (CB) of x-rays are employed in CT.

3D image reconstruction from circular CB data has been an
active research field for the last two decades. While the exact
reconstruction is achievable on the plane of the source trajec-
tory (mid-plane) if the rotation angle is larger than 7 plus cone
angle, it is impossible outside this central plane (off-plane).
Many approximate algorithms have been developed for a
circular CB scan. The filtered-backprojection (FBP-based
reconstruction, due to Feldkamp et al. (FDK), is by far the
most popular algorithm mainly for its structure of one-dimen-
sional (1D) shift-invariant filtering. Although developed heu-
ristically as an extension of the exact fan-beam reconstruc-
tion, this algorithm is very close to the optimal in the sense of
without data extrapolation. It, however, results in severe CB
artifacts in the case of short scan, which is very attractive in
many applications, such as in the current C-arm CT. In order
to handle the data redundancy, a simple but empirical modi-
fication of FDK uses Parker’s weighting (P-FDK), which is
accurate only for the mid-plane. Unlike the FDK algorithm on
a full scan, this algorithm is not the optimal even in the sense
of without data extrapolation. Nonetheless, the structure of
1D shift-invariant feature (for computation efficiency), other
researchers apply a mathematically exact algorithm to the
short scan source trajectory. The derived algorithm, however,
does not necessarily achieve the optimal reconstruction.

SUMMARY OF THE INVENTION

The present invention proposes use of a tomographic
reconstruction algorithm using shift-invariant filtering and
backprojection with the maximum tomographic capability of
a circular scan larger than & plus cone angle, when CB data is
not truncated and data extrapolation is not allowed. The
reconstruction scheme includes a conventional FDK recon-
struction and a parallel reconstruction using differential back
projection and 1D Hilbert transform to suppress the CB arti-
facts. Numerical results compare the performances of P-FDK
and our algorithm, and show that the algorithm outperforms
P-FDK generally. The reconstructed quality on a short scan
using our algorithm is comparable to that on a full scan using
FDK, although the data acquisition is reduced almost by half.
Reconstructions on simulated noisy data manifest the stabil-
ity of our algorithm.
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2

The invention and object and features thereof will be more
readily apparent from the following detailed description and
appended claims when taken with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a CB data acquisition geometry and coor-
dinate system.

FIG. 2 illustrates the divergent to parallel conversion theo-
rem.

FIG. 3 illustrates the tilted parallel projection and its sam-
pling pattern in the Fourier domain.

FIG. 4 illustrates the redundancy function on the plane of
=, solid lines indicate the region boundaries.

FIG. 5 illustrates the system geometry and the real and
hypothetical coordinate systems.

FIG. 6 illustrates the reconstruction of the modified high-
contrast Shepp-Logan phantom on a short scan. Left column:
using modified FDK with Parker’s weighting; Right column:
using equation (22). The thin lines on the image indicate the
location that the 1D profiles are taken.

FIG. 7 illustrates the reconstruction of the modified high-
contrast Shepp-Logan phantom on a full scan, using FDK
algorithm.

FIG. 8 illustrates the noise-free reconstruction of the low-
contrast Shepp-Logan phantom on a short scan. Left column:
using modified FDK with Parker’s weighting; Right column:
using equation (22).

FIG. 9 illustrates the reconstruction of the low-contrast
Shepp-Logan phantom on a short scan.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Data Acquisition Geometry

Consider first a mathematical description of the recon-
struction problem, and two theorems that are important in our
algorithm derivation. The conversion theorem from divergent
projection to parallel projection provides a link between these
two imaging geometries, and the FBP-based algorithm on a
tilted parallel full scan gives the optimal reconstruction if
projection data is not truncated and extrapolation is not
allowed. A generalized version of the latter is also derived for
later use.

Herein, we use an equally spaced flat panel detector with a
finite size. As shown in FIG. 1, The cone angle vy,, of this
imaging setup is determined by the maximum angular cover-
age of the cone-beam in the u direction on the detector. During
data acquisition, the x-ray source S rotates along the z axis on
the x-y plane, with a fixed distance D to the center of rotation
O, and the rotation starts at angle 3, and stops at 3, with total
rotation of not less than w+y,, (18, ,1Zn+y,,). The detector is
placed perpendicular to SO for each projection. In the Carte-
sian coordinate system with the origin at O, the source posi-
tion is:

5 (B)=(D cos B.Dsin B.0).BEIB. B M
The object to be reconstructed is described by a nonnega-

tive function f(?), where (?):(x, y, z) is the Cartesian
coordinate. It is also assumed that f is compactly supported
and that the CB detector covers the whole object from any
view during data acquisition. In other words, there is no
truncation of the projection data.

Denoting the distance from O to detector as D, ;, then the
relation between p(u, v, ), the real projectionimageand p,, (u,
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v, ), the image on a virtual detector that is parallel to the real
detector and passes through O, is as follows:

@

D+Dod)2 (14

D+D,; D+Dyy )
D s

v, B =( L v—

For simplicity, we regard the virtual detector as the real
detector, and reconstruct from p, hereafter. The subscript ofp,,
is dropped without ambiguity.

The projection data on the detector are measured along two
unit vectors in the Cartesian coordinate system, &,(f3)=(-sin
f3,cos B, 0)and &, ()=(0, 0, 1). The projection at angle on the
detector is the set of half line integrals, written as:

Py B=]odlf (5 B+ 7 oB) )

-
where s is the source position as defined in equation (1), and

-
r o is the unit vector of line integral direction,

“

Fo(p) = = (©eu(B) +ve,(B) = 3(B)

1
Vu+v2+D

A Conversion Theorem from Divergent to Parallel Projec-
tions

The classic central slice theorem in 3D states that the
Fourier transform of a 2D parallel projection image is the
Fourier transform of the 3D object on the 2D slice that is
normal to the projection direction. In parallel projection CT,
it enables a simple analysis of the projection data plane by
plane. This nice feature is lost in divergent projection CT, and
in the reconstruction, either a rebinning step is involved or the
projection data is analyzed using Radon transform theory.

A relation between parallel and divergent projections has
beendescribed by Edholm et al., and is summarized below. As
shown in FIG. 2, in the divergent projection, the x-ray source
is located at (x,,,y,1;,), and p (u, v) is the divergent projection
image on the plane z=0 through an object f. The origin is

denoted O, and 0, is the angle between S_C>) and the z axis.
Another projection image p,(u, v) is generated on the same
plane from parallel rays through a hypothetical object h, and

the parallel rays are parallel to the line S_C>) in the divergent

geometry. Let ?:(x, y, 7), then the following statement is
true:

If the coordinate system of the parallel geometry is related
to that of the divergent geometry as

Fo D g ®)
" Dh—Zf 4

and, the hypothetical objecth is generated as a transformation
of the real object f, given by

 (Du-zy ©
h#) = (hD—hzf] )
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then, we have:

M

cosf)
Pr(u, v) = ——ps(u, v) where
cosby
cosf) X +y:2+ D vz
cosfo | (v—x0)? + (u— yo)? + D}

The intuition of this theorem is as follows. Since in a
divergent projection geometry, each slice of the object that is
parallel to the detector has a uniform magnification factor

(5
Dh—Zf

as in equation (5)), stretching the object can convert divergent
rays of the projection to parallel rays. This theorem relates a
divergent projection to a parallel projection via constructing a
virtual object, and the classic central slice theorem then
comes back into play in the Fourier domain of the virtual
object.

However, for this theorem to be useful in CT reconstruc-
tion, it is required that the hypothetical object h is the same for
each view. According to equations (5) and (6), an equivalent
condition is that, the source to detector distance D is fixed
during the data acquisition, and the rotation trajectory of the
x-ray source and the detector is in a plane perpendicular to the
z, axis. While this requirement is satisfied in some tomo-
graphic imaging geometries, such as tomosynthesis, it is not
in the circular CB scan. Therefore, a novel approach using
imaging geometry transformation is proposed to make
Edholm’s theorem applicable, as will be presented in section
I

A FBP-Based Reconstruction on a Tilted Parallel Circular
Scan

As will now be shown, our CB reconstruction algorithm is
closely related to the reconstruction on a tilted parallel circu-
lar scan. In FIG. 3 we show the parallel projection in the
image and Fourier domain with a tilting angle 6, between the
projection direction and the axis of rotation. The parallel
projection data p(u, v, ) are measured along two unit vectors,
&,(B)=(-sin B, cos B, 0) and &,(p)=(cos 3, sin 3, 0), on a flat
detector. It is assumed that the detector is equally spaced.
However, the derived formula also works for non-uniformly
spaced detectors, except that the projection image would have
to be multiplied by an additional term that compensates for
the projection domain sampling density variation. According
to the central slice theorem, the Fourier transform of each
projection is the sampled slice of Fourier space data of the
object that is perpendicular to the direction of projection. If
the rotation angle is 27, two cones of missing data appear in
the Fourier domain as shown in FIG. 3(b).

Reconstruction on a full scan: AFBP-based reconstruction
algorithm on a full scan has been developed by Pelc, without
using data extrapolation. In this case, not using extrapolation
is equivalent to assuming that the data inside the unsampled
cones are zero. This algorithm is the same as the special
non-tilted case when
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except that an additional scaling term, sin 6, is included in
the ramp filter kernel g,(y), which comes from the oblique
sampling along the z direction. The reconstruction formula is
reviewed below:

n 1 27 oo _ _ (8)
fova=3 f f P —u, v, Prgwdud p
0 —o0

where,

W = —sinfSx + cosBy

V = cosfBx + sinfBy + tanfyz
() = sinfgo (1)

and

w
go(u):f |w] e d .
—w

W is the cut-off frequency that depends on the resolution of
the projection image.

Reconstruction on less than a full scan: Two factors act
jointly in the Fourier domain sampling pattern, the sampling
density along the radial direction and the redundancy func-
tion. The redundancy function is defined as the effective
number of times that a frequency sample in the Fourier
domain contributes in the backprojection after ramp filtering.
The above reconstruction scheme compensates for the sam-
pling density variation along the radial direction using a ramp
filter, but does not compensate for the redundancy function.
The scheme works well on a full scan, since the redundancy
function, Ry, is uniformly 2 outside of the missing cone and 0
inside. However, as illustrated in FIG. 4, less than a full scan
results in a non-uniform redundancy function R, and the
reconstruction is sub-optimal.

To generalize the reconstruction algorithm for less than a
2 rotation, one possibility is to incorporate the redundancy
correction into the ramp filtering, and the 1D ramp filter
becomes a 2D filter. However, restriction to 1D filtering is
critical in our algorithm development, because of the conver-
sion from divergent to parallel geometry, and we propose a
novel reconstruction scheme that requires only 1D filtering.

Since the Hilbert transform reverses the sign of half of the
input signal in the Fourier domain (besides the multiplication
of’j), taking the 1D Hilbert transform of the projection image
along ¢, after ramp filtering and before backprojection results
in the redundancy function R, as shown in FIG. 4(c). The
vector &, is also the direction of the 1D ramp filtering (see
FIG. 3(a)). The region that has double sampling in R, is where
the signal cancellation occurs in R,, (region B, in both FIG.
4(b) and FIG. 4(c)). Note that the sum of IR,| and R; is
uniformly 2 outside the region of no samples (region A), as we
desire. Taking the absolute value of R, can be done alterna-
tively by, after backprojecting the Hilbert transformed pro-
jection images for all views, taking another 1D Hilbert trans-
form on the reconstructed volume along the direction

o= (sin B P cof BB )

in the 3D image domain. The sign of region C in R, is
reversed, and the multiplication ofj that is associated with the
1D Hilbert transform combines that of the previous Hilbert
transform in the projection domain, and makes the resulting
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6

redundancy function positive real. Therefore, the generalized
reconstruction formula can be written as:

®

2

where, (3, and (3, are the start and end angles, and operator HA
is the Hilbert transform along the direction ?0:(—sin A, cos

—
A,0). Let r ~(x,y,2),
1
gnlu) = —

is the kernel of Hilbert filter:

B p=f R 7 A7 g sl

The function ¥, is the reconstructed image using the for-
mula as in the full scan, with the redundancy function R,
uncompensated,

(10)

N 1 (Pe . (11
Fi =3 f f pa—u, v, Psinfogoluwdud B

s

Where u, v, and g, are defined as in (8).

The function 5“2 is the reconstructed image obtained by
applying the 1D Hilbert transform before backprojection,
with a redundancy function R,

. 1 e ) (12)
frlx v, 2)= Ef rp(ﬁ —u, V, Psinogn-(dud
Bs V-

where g, is the convolution of the ramp filter kernel g, and
the Hilbert kernel g,

a3

~ golu—1)
ghr—f = dl

—ca

Since ramp-filtering and the Hilbert transform can be com-
bined as taking the first derivative, the above formula can also
be expressed more simply as:

\ BN N (14)
Pl .00 = ifﬁx sindy ot | 4

U

As the angle range B.-f, increases, more cancellation
occurs in f,; when (B,-f,)=2mw, f, cancels completely and
equation (9) is reduced to equation (8).

Reconstruction on not Less than a Short Scan

According to Edholm’s theorem, each divergent projection
can be converted into a parallel projection by constructing a
hypothetical object. However, converting the circular CB
imaging geometry into circular parallel imaging requires that
the hypothetical object is unchanged for each view. This is not






